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Abstract

DEM error propagation methodology is extended to the derivation of vector-based ob-
jects (stream networks) using geostatistical simulations. First, point sampled elevations
are used to fit a variogram model. Next 100 DEM realizations are generated using con-
ditional sequential Gaussian simulation; the stream network map is extracted for each5

of these realizations, and the collection of stream networks is analyzed to quantify the
error propagation. At each grid cell, the probability of the occurrence of a stream and
the propagated error are estimated. The method is illustrated using two small data
sets: Baranja hill (30 m grid cell size; 16 512 pixels; 6367 sampled elevations), and
Zlatibor (30 m grid cell size; 15 000 pixels; 2051 sampled elevations). All computa-10

tions are run in the open source software for statistical computing R: package geoR
is used to fit variogram; package gstat is used to run sequential Gaussian simulation;
streams are extracted using the open source GIS SAGA via the RSAGA library. The
resulting stream error map (Information entropy of a Bernoulli trial) clearly depicts ar-
eas where the extracted stream network is least precise – usually areas of low local15

relief, slightly concave. In both cases, significant parts of the study area (17.3% for
Baranja Hill; 6.2% for Zlatibor) show high error (H > 0.5) of locating streams. By cor-
relating the propagated uncertainty of the derived stream network with various land
surface parameters sampling of height measurements can be optimized so that delin-
eated streams satisfy a required accuracy level. Remaining issue to be tackled is the20

computational burden of geostatistical simulations: this framework is at the moment
limited to small to moderate data sets with several hundreds of points. Scripts and
data sets used in this article are available on-line via the www.geomorphometry.org
website and can be easily adopted/adjusted to any similar case study.
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1 Introduction

In geomorphometry, Digital Elevation Models (DEM) are routinely used to extract vari-
ous continuous (gridded) land surface parameters, and/or discrete (vector) land surface
objects. Assuming that DEMs are perfectly accurate, extraction of land surface param-
eters and objects is a simple operation (Fig. 1a). However, in reality, DEMs are not per-5

fect representations of reality – DEMs suffer from systematic and random errors and
DEM elevations differ from what we measure on the field. In fact, errors are inevitable,
even if elevation models are produced using highly accurate and dense sampling tech-
niques such as LiDAR (Evans and Hudak, 2007; Bater and Coops, 2009). Errors are
inherent both in measurements of elevations, and in the DEM analysis algorithms, and10

can possibly have a significant influence on the reliability of final products. By ignor-
ing errors in the input layers, analysts often get disappointed when their products are
evaluated versus ground truth data. This is true especially for hydrological applications
(Wise, 2000; Wechsler, 2007).

The approach to GIS analysis that takes into account that GIS input layers are of lim-15

ited accuracy, and that provides a way to assess the propagated uncertainty associated
with the output of the analysis, is known as error propagation (Heuvelink, 1998). The
potential of using error propagation has been first recognized by Burrough (1986) and
Englund (1993). At that time, it seemed unlikely that stochastic simulations would be-
come routinely available in a GIS environment. Since then, the world has evolved: com-20

puters are more powerful, statistical tools are more accessible and more sophisticated.
We are slowly reaching a point when error propagation will become a standard toolbox
of any GIS software (Wechsler, 2007). Examples of using error propagation methods
to assess the accuracy of various scalar-type land surface parameters derived from
DEMs can be found in the work of Fisher (1992); Heuvelink (1998); Dutta and Herath25

(2001); Raaflaub and Collins (2006) and Oksanen and Sarjakoski (2005). Brown and
Heuvelink (2007) recently produced a generic library for uncertainty modeling called
Data Uncertainty Engine (DUE). A group at Aston University has been developing the
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Uncertainty Markup Language (UncertML, http://www.uncertml.org) that could become
a standard for writing metadata for error propagation applications. However, there are
still technical and conceptual issues that need to be solved before an uncertainty en-
gine becomes a standard part of any GIS (Heuvelink, 2002; Temme et al., 2008). One
such open issue is that the problem of assessing accuracy of vector-type features5

(watershed boundaries, stream networks, break lines, escarpments and similar) has
been under-represented in the literature, and theory to support applications is in gen-
eral missing. Most of papers that suggest ways to model uncertainty of vector-based
objects in a GIS do not specify how to actually compute these using real data.

This article proposes a methodology to assess errors of stream networks extracted10

from digital elevation models. It uses two small case studies to demonstrate how to
implement geostatistical simulations and assess the propagated uncertainty and map
the error of locating streams. Our secondary objective is to promote the geostatistical
tools implemented in the open source environment for computing (R), and geographical
analysis tools implemented in the open source GIS (SAGA). Scripts and datasets used15

in this article are available on-line via the www.geomorphometry.org website. Users
and developers are encouraged to adopt, extend and improve.

2 Methods and materials

2.1 Error propagation

GIS error propagation can be defined as a set of statistical procedures that model un-
certainties in the input maps, and for a given GIS operation, estimate the (propagated)
error of mapping a feature of interest. In mathematical terms, the output map is a result
of an operation applied to multiple spatial layers (Heuvelink, 1998):

U(s)=g
{
A1(s),...,Ap(s)

}
(1)
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where A1(s),...,Ap(s) are the GIS inputs (spatial layers), U(s) is the output map, p
is the number of inputs, s is the vector of coordinates (spatial location x,y), and g
is the GIS operation. The main focus of error propagation is determination of the
mean value (Ū(s)) and its standard deviation (σ2

U (s)), or ideally the entire probability
distribution of the output map U for any location s in the area of interest A. Note that the5

probability distribution of the output map is quite involved because it must also capture
the spatial statistical dependencies. In case of GIS output that is a spatial object such
as a streamline, the probability distribution is even more complex. Possibly the easiest
way to characterize uncertainty of discrete spatial objects is by generating a number
of those objects (especially for objects that cannot easily be specified): for example,10

river network is the output from numerical algorithm that operates on the terrain data;
although the flow modeling formulas are deterministic, the consequent uncertainty can
not be specified separately from the terrain on which it was generated. In fact, Tarboton
and Baker (2009) argue that it is close to impossible to integrate uncertainty in the flow-
algebra.15

The benefit of running an error propagation analysis is, first and foremost, that it
quantifies the uncertainty in the GIS result. If the probability distribution of the input A
is narrow, then we might expect that the propagated uncertainty will be narrow as well,
but this need not always be the case. The sensitivity of model output to small changes
in the input is also important. Also, when there are multiple uncertain inputs it becomes20

difficult to predict the impact of error in input maps on derived products. The situation
is even more complex if errors in inputs are spatially variable – in some parts of the
study area they can be high, in others low – so that it becomes difficult to predict where
in the study area the uncertainty of the derived map becomes critical. By ignoring the
fact that errors in input maps exist and that they are significant, we create a wrong idea25

about the precision of the derived land surface objects. Hence the primary benefit of
running error propagation is visual and statistical assessment of errors in the output
maps.
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In principle, there are two main approaches to error propagation: (a) the analytical,
and (b) the Monte Carlo approach (Heuvelink, 2002). In the first case, the propagated
error is derived using some mathematical technique such as via a Taylor series ex-
pansion; in the second case, stochastic simulation is used to sample m times from the
input probability distribution and the operation is repeated m times. The Monte Carlo5

approach is more suited for cases where the GIS operation g is that complex that it
is practically impossible to mathematically derive the propagated distribution model.
Since this is the case for many GIS applications, the Monte Carlo approach has be-
come the dominant approach to error propagation (Wechsler, 2007).

In the case of Monte Carlo simulation, the mean value (Ū(s)) and the standard devi-10

ation (σ2
U (s)) of the output feature is simply:

Ū(s)=

∑m
j=1U

SIM
j (s)

m
(2)

σU (s)=

√√√√∑m
j=1

(
USIM
j (s)− Ū(s)

)2

m−1
(3)

In the case of stream network extraction from DEMs, the error propagation model
(Eq. 1) is:

USIM =g
{
zSIM,b1,...,bp

}
(4)

where zSIM is the simulated elevation map, USIM(s) is the output value of stream (either
1 or 0, depending on whether the location is part of the stream or not), and b1,...,bp15

are the user-defined, constant, hydrological model parameters, for example: minimum
segment length, initiation grid, initiation threshold etc. These parameters can be un-
certain too. Although this looks like a trivial model, the function g involves a spatial
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analysis with respect to flow direction on the input elevation map, so that small differ-
ences in elevation at some locations can result in completely different stream patterns
while large differences at other locations can have no effect.

Streams have several specific properties that distinguish them for other land surface
parameters and objects. Streams are discrete objects – a stream is composed of a set5

of interconnected points (represented as grid cells). These objects have attributes such
as length and curviness, Horton or Strahler ordering. A grid cell can be part of a stream
(value 1) or not (value 0) i.e. it becomes a Bernoulli variable with probability p being part
of the stream. The majority of cells will have a small value for p simply because streams
are by definition rare events. The mean of the Bernoulli variable at some location is10

simply p; its variance is given by p · (1−p). The uncertainty of detecting streams can
be alternatively characterized by the Shannon entropy (Shannon and Weaver, 1949):

H(s)=−p(s) · log(p(s))− [1−p(s)] · log(1−p(s)) (5)

where p is the probability of a grid cell being part of the stream estimated by the number
of times the model puts a stream at the cell, divided by the total number of Monte Carlo
realizations. The precision of estimating the propagated uncertainty is inversely related15

to the Monte Carlo sample size. This means that if we run 100 simulations, and then at
some location detect stream 99/100 times (p=0.99), the estimated error will be 0.056,
and we can not map uncertainty with a finer precision. If the model detects streams
with equal probability of stream and not-stream (p=0.5), this will produce the highest
error of 1 (Fig. 2).20

2.2 Geostatistical simulations

Monte Carlo analysis of spatial error propagation requires the generation of realistic
simulations of elevation values. The most common technique in geostatistics used
to generate equiprobable realizations of a spatial feature is the Sequential Gaussian
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Simulation (Goovaerts, 1997). To simplify matters, it is assumed that elevation can be
modeled as a stationary random function (Goovaerts, 1997; Kyriakidis et al., 1999) with
a constant mean:

µ=E {Z(s)} (6)

and a variogram model that only depends on distance between points:

2 ·γ(h)=Var{Z(s)−Z(s+h)}

=E
{

[Z(s)−Z(s+h)]2
} (7)

where h is the separation vector between two locations, and γ(h) is the semivariance.5

A capital letter Z is used because we assume that the model is probabilistic, i.e. there
is a range of equiprobable realizations of the same model. If the variable of interest
(elevation) has been sampled at a set of point locations (z(s1), z(s2),. . . , z(sn), where
si = (xi ,yi )), then these can be used to fit a variogram model. Once we have estimated
the variogram model parameters, we can use this model to produce simulations of Z10

that have the same spatial structure:

zSIM(s0)=E {Z(si )|z(si ),i =1,...,n} (8)

where zSIM is the simulated value at location s0. In this case, simulations will be con-
ditioned on the observations at sampling locations z(si ). Under the assumption of
second-order stationarity, we can use for example a global exponential variogram with
three parameters to produce a simulated DEM. A slightly more sophisticated variogram15

is the Matérn variogram model, which has an additional parameter to describe the
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smoothness (Stein, 1999; Minasny and McBratney, 2005):

γ (h)=C0 ·δ (h)+C1 ·
[

1

2v−1 ·Γ(v)
·
(
h

R

)v

·Kv ·
(
h

R

)]
(9)

where C0, is the nugget parameter, C1 the sill parameter, R the range parameter, δ (h)
is the Kronecker delta, Kv is the modified Bessel function, Γ is the gamma function
and v is the smoothness parameter. The Matérn variogram model is especially suited
for elevation data because the smoothness, common for topographic features, can5

be nicely represented with the v-parameter. Note, however, that using the Matérn
variogram is only sensible when the nugget variance is insignificant i.e. close to zero.

When additional auxiliary maps are available that can be used to explain the deter-
ministic component in the spatial distribution of elevation values, more accurate simu-
lations of topography can be produced using the regression-kriging model (Hengl et al.,10

2008). For the purpose of this article, we will follow a simple case and assume: (a) that
the elevation values are realizations of a second-order stationary random function with
a constant trend; and (b) that the spatial auto-correlation can be modeled using a
Matérn variogram.

In summary, the error propagation approach to extraction of streams from elevation15

data can be summarized in five steps (Fig. 1b):

1. calculate an experimental variogram from the data and fit a (Matérn variogram
model to it with parameters: C0, C1, R and v) to represent the variability of the
input DEM;

2. generate multiple realizations of the DEM using conditional simulation and the20

variogram model fitted previously (Eq. 8);

3. filter spurious sinks; derive stream network for each realization, and save the
temporary result (Eq. 4);
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4. aggregate the derived maps to estimate stream occurrence frequency and error
of mapping streams (Eq. 5);

5. evaluate how the propagated error relates to various topographic parameters;
then consider improving quality of input DEM or filtering elevations where
necessary.5

A disadvantage of the Monte Carlo approach is that it requires a significantly large
number of realizations to produce a reliable estimate of the distribution function. The
number of realizations m must be sufficiently large to obtain stable results, but exactly
how large m should be depends on how accurate the results of the uncertainty anal-
ysis should be. Theoretically speaking, the accuracy of the Monte-Carlo method is10

proportional to the square root of the number of runs m (Temme et al., 2008). There-
fore, to double the accuracy one must quadruple the number of runs. This means
that although many runs may be needed to reach stable and accurate results, any de-
gree of precision can be reached by taking a large enough sample m. As a rule of
thumb, we can take 100 simulations as being large enough, and everything below 2015

as insufficient (Heuvelink, 1998). Consequently, the Monte-Carlo method is computa-
tionally demanding, particularly when the GIS operation takes much computing time
(Heuvelink, 2002).

2.3 Software tools

In this article we use a combination of statistical and geographical computing software20

to assess propagated error of detecting streams: SAGA GIS for geographical comput-
ing, and R for statistical computing; all operations are in fact combined in the same
script. In this case, R is used to control both internal add-on packages, but also exter-
nal GIS SAGA (R “on top”) via a special link library RSAGA. A detailed description of
R+SAGA integration can be can be found in Brenning (2008).25
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Because most of the packages used in this article are not common to majority of
GIS users and hydrologists (especially to users of ESRI-products), we consider worth
introducing SAGA, gstat and geoR, and reviewing its main functionality. A small guide
on how to install, set and make first steps in the two packages, is also given in the
Appendix A. This should help you reproduce the analysis shown in this article with5

your own data. Even more detailed instructions on how to combined R and SAGA
using the same data sets can be found in Hengl (2009).

2.3.1 SAGA GIS

SAGA1 (System for Automated Geoscientific Analyses) is an open source GIS that has
been developed since 2001 at the University of Göttingen (the group recently collec-10

tively moved to the Institut für Geographie, University of Hamburg), Germany, with the
aim to simplify the implementation of new algorithms for spatial data analysis (Conrad,
2006, 2007). A point data set of measured elevations can be used in SAGA to gener-
ate a Digital Elevation Model (DEM), that can then be used to extract a stream network
(see scheme in Fig. 1a). For example, you can open the point layer in SAGA GIS, then15

use the module Grid 7→ Gridding 7→ Spline interpolation 7→ Thin Plate Splines (local)
and generate a smooth DEM. Then, you can preprocess the DEM to remove spurious
sinks using the method of Planchon and Darboux (2001). Select Terrain Analysis 7→
Preprocessing 7→ Fill sinks, and then set the minimum slope parameter to 0.1.

Once you have prepared a DEM, you can derive stream networks using the Channel20

Network function which is available in SAGA under Terrain Analysis 7→ Channels. This
implements the original algorithm described in Conrad (2007) and which is based on
the FD8 multiple flow direction algorithm by Quinn et al. (1995). As a result, you should
get a map shown in Fig. 3. Assuming that the DEM and the stream extraction model
are absolutely accurate, i.e. that they perfectly fit the reality, this would then be the end25

product of the analysis (which corresponds to the scheme in Fig. 1a).

1http://saga-gis.org
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2.3.2 R and packages gstat and geoR

R is the command-based environment for statistical computing (R Development Core
Team, 2009). From recently, many spatial packages have been contributed, which
allow R to be also used for spatial analysis. Two important add-on packages that
are used in this article are gstat (Pebesma, 2004) and geoR (Diggle and Ribeiro Jr.,5

2007). In principle, a large part of functionality of gstat and geoR overlap. On the other
hand, geoR has many original methods, including an original format for spatial data
(called geodata ). geoR is especially powerful to fit variograms (including interactive
visual fitting), and for dealing with non-normal data; gstat is somewhat more fit to run
predictions and generate simulations, even with large data sets. gstat also uses spatial10

classes in R, so that conversion to GIS formats is fairly easy.
Once we have simulated m DEMs using gstat, we can derive stream networks using

the “Channel Network ” function, which is available also via the command line – via
the ta channels SAGA library (see further Appendix A). This means that, through
scripting in R, one can automate both geographical processing and statistical analysis,15

and implement the computational scheme shown in Fig. 1b to any similar data set.

2.4 Study areas and data sets

We use two previously published examples to demonstrate the method: the “Baranja
hill” case study is of mixed low and high relief, and the “Zlatibor” case study is an
area of high relief. In principle, the only input for both exercises is a point map show-20

ing field-measured elevations (ESRI Shapefile). These maps are used to generate
multiple realizations of Digital Elevation Model, and then extract drainage network, as
implemented in the SAGA GIS package. Vector maps showing the actual location of
streams are also available for both study areas.

The study area “Baranja hill” is located in eastern Croatia (centered at25

45◦48′16.4412′′ N, and 18◦39′54.198′′ E); it has been extensively mapped over years
and several GIS layers are available at various scales (Hengl and Reuter, 2008). The
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study area corresponds approximately to the size of a single 1:20 000 aerial photo. Its
main geomorphic features include hill summits and shoulders, eroded slopes of small
valleys, valley bottoms, a large abandoned river channel, and river terraces (Fig. 3). El-
evation of the area ranges from 80 to 240 m with an average of 157.6 m and a standard
deviation of 44.3 m. The data set consists of 6367 points of field measured heights.5

The complete data set is available for download from the geomorphometry dataset
repository2. A similar error propagation exercise using the same case study can be
followed in Temme et al. (2008).

The second case study, “Zlatibor”, is located in the South-western part of Serbia
(centered at 43◦43′44.6′′ N and 19◦42′37.8′′ E). The area is mainly hilly plateau, with10

the exception of the north-eastern part where the slopes are much steeper (see further
Fig. 6b). Elevations range from 850 m to a maximum of 1174 m; the total size of the
area is 13.5 square kilometers. The data set consists of 2051 height measurements.
An additional set of 1020 very precise spot heights used for error assessment is also
available. This data set is described in detail in Hengl et al. (2008) and can be also15

obtained from the geomorphometry dataset repository3.

3 Results

The first result of analysis are the variogram models fitted in geoR (Fig. 4). These
show that the target variable (z) varies equally in all directions in both study areas,
which means that it can be modeled using isotropic models. For Baranja Hill study20

area geoR fits a Matérn variogram model with nugget parameter C0=0, sill parameter
C1=1831, and range parameter R=1051 m (practical range is 3.1 km); for Zlatibor case
study, the elevation values are more variable – the sill parameter is C1=2173, nugget
parameter is still C0=0, range parameter is R=761 m. In both cases z seems to be a

2http://geomorphometry.org/content/baranja-hill
3http://geomorphometry.org/content/zlatibor
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relatively smooth variable – there is no nugget variation and spatial autocorrelation is
effective (practical range) up to distance of 2–3 km.

Both are in fact typical variograms for elevation data i.e. representation of a land
surface. Note also that, in both cases, the target variable shows close to normal dis-
tribution so no transformation was necessary. As expected, the confidence bands5

(envelopes) are much narrower at smaller distances (Fig. 4). The relatively wide
confidence bands at larger distances indicate that it might be worthwhile to consider
using local (moving window) geostatistical analysis and adjust the variogram parame-
ters locally.

In the next step, we look at the dispersion of the stream lines derived for all simulated10

DEMs. Once the processing is finished, we can visualize all derived streams at top of
each other. The 100 realizations of stream network maps for the two study areas are
shown in Fig. 5. The visualization of density of streams clearly illustrates the concept
of propagated uncertainty. If you zoom in into this map, you will notice several things.
First, in some areas streams are isolated and hence seem to be very improbable; in15

other areas stream are densely distributed but over a wider area. Note also that the
derived streams follow the gridded-structure of the DEMs, which explains some artificial
breaks in the lines. Some artifacts in these maps are probably a consequence of the
fact that we have used arbitrary input parameters for the minimum length of streams
(40) and initial grid. These parameters could have been find-tuned by experts familiar20

with the study areas, but this is not relevant for this exercise.
In both cases, significant parts of the study area – 17.3% for Baranja Hill; 6.2% for

Zlatibor – show relatively high error (H >0.5) of locating streams (Fig. 6). Although high
absolute values of error can be observed in both areas of distinct and low relief, the
cumulative propagated variability of detecting a stream is much higher in the terrace25

region of the study area Baranja Hill (Fig. 7). The errors are, in fact, a bigger problem
than we have anticipated. In addition, the course of many streams is dramatically
different from where the streamlines are thought to be located on the basis of DEM-
streamline analysis. In the case of the Baranja Hill study area, this is because many
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channels are manmade and hence do not have to follow the topography (Fig. 6a). In
the Zlatibor study area only one or two small patches of terrain seem to be problematic.
The results from these two small case studies clearly demonstrates the usefulness of
the error propagation analysis – by mapping the propagated error we can delineate the
most problematic areas and focus our further efforts.5

Now that we have estimated the propagated uncertainty of extracting channel net-
works (streams) from DEMs, we can try to understand how this uncertainty relates to
the geomorphology of terrain. It is interesting to derive a map of channel-slope and/or
topographic wetness index, as it largely controls the hydrological properties, and the
difference from the mean value in 5×5 search radius, as it describes local variability of10

shapes.
The results from the two case studies show that some 30–35% of the variability in

the error maps can be explained with the difference from the mean value in the 5×5
window (Fig. 7). By knowing this, we could now allocate resources and collect more
accurate, more densely sampled elevations in the areas that have similar geomorpho-15

logical properties. In fact, one could further optimize elevation sampling and improve
the accuracy of extracted streams to reach the required threshold. The alternative is
to down-grade the effective scale of the streams derived using this point data. For ex-
ample, it is obvious from Figs. 5 (below) and 6b that the model has not much problems
of locating streams in the area of relatively high relief (Zlatibor), however, the spatial20

accuracy of derived streams does not get better than ±50 m, so that it is reasonable to
consider degrading the scale of the output map e.g. from 1:15 000 to 1:50 000 scale.

The computational burden of this method is also an issue. The most costly opera-
tions are geostatistical simulations and extraction of stream networks. Geostatistical
simulations, even with a search radius of only 30 closest points, takes 5–10 min to gen-25

erate 100 simulations for these small study areas (150×100 pixels). This means that
this framework is at the moment limited to small data sets with few hundreds of points;
it would be probably of limited use for large LiDAR point data sets.
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4 Discussion and conclusions

The two case studies demonstrate that it is worth investing in error propagation – in
both cases we are able to detect some difficult areas where extracted stream net-
works will be critically imprecise. Figures 5 and 6 show two interesting things: (1) the
dispersion of stream networks is in some areas significant; (2) streams are especially5

difficult to map in areas where the difference from the mean value is positive – meaning
areas with low local relief or close to concave shapes. This largely reflects our expec-
tation, but it is rewarding to be able to prove these assumptions using hard data. Some
remaining issues and ideas for further research are discussed below.

In the two studies, we have have ignored many aspects of data analysis and used10

model parameters that now deserve justification. For example, for geostatistical simula-
tions, we have set the kappa parameter relatively high at 1.2 (see Diggle and Ribeiro Jr.,
2007 for more examples). Following the knowledge about the feature of interest, we
assumed that a land surface is inherently smooth – due to the erosional processes and
permanent leveling of topography. Hence, we wanted to generate realizations of DEMs15

that fit our knowledge of the area. Why is the high kappa parameter necessary? If
we run DEM simulations with e.g. an exponential model, we noticed that realizations
will be much noisier than what we would expect (Hengl et al., 2008). This will hap-
pen even if we set the nugget parameters at zero (smooth feature). There are several
explanations for this. Having a non-zero grid resolution implies that the correlation be-20

tween adjacent grid cells is not equal to 1, so that grids may still appear to have noise
(Temme et al., 2008). A noisy DEMs leads to completely different drainage networks –
the streams will be shorter and more random – which we know does not fit knowledge
about the area. The Matérn variogram model (Eq. 9), on the other hand, allow us to
produce smoother DEMs, while still using objectively estimated nugget, sill and range25

parameters. This makes it especially suitable for modeling of land surface.
We have also limited the number of simulations to 100. Perhaps this number should

be larger, particularly because we are dealing with a feature that commonly has a
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small p. It should be feasible to evaluate the increase in accuracy with an increasing
number m, e.g. by evaluating the change in derived probability or attribute property
such as estimated stream length or catchment width. If such a parameter or function
does not change anymore below a certain threshold, no more simulations seem to be
required. An elegant alternative can be to calculate the information content of each5

additional realization. With an increasing sample size, the change in the ultimate prob-
ability field becomes less and less. This is certainly an idea worth further research.

We have also set the grid cell size at 30 m without any real justification. The next
step would be to consider some statistically sound approach to select a grid cell size
based on the accuracy of the derived stream network. This follows the idea of Hutchin-10

son (1996), who use an iterative DEM cell-size optimization algorithm as implemented
in the ANUDEM package. By plotting the error of mapping streams versus the grid
spacing index, one can select the grid cell size that shows the maximum information
content in the final map. The optimal grid cell size is the one where further refinement
does not change the accuracy of derived streams. It would be interesting to see if the15

optimal detection of the grid cell size for hydrological objects can be operationalized,
so that the users only need to provide the point data.

Another question that needs to be addressed is how much of the analysis should
be automated? Can and should error propagation be automated so that it becomes
a default operation of any DEM analysis? If yes, users will not even have to see the20

steps behind error propagation (black-box approach), but simply select a land surface
object/parameter of interest and the software will decide about the reasonable number
of simulations, suitable grid cell size, depict the areas that are critical etc. The case
studies shown in this paper are fairly small in size, hence it was not expensive to run
100 simulations. How to deal with the computational complexity of error propagation?25

These case studies obviously demonstrated that such analysis provides richer picture
of the spatial variability of propagated errors, but is this always needed? What if error
propagation is useful only for small parts of the study area; is there then still a need to
run such analysis globally?
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The two case studies shown in this article consists of precisely measured elevations
over a small and homogenous area. How to generate simulated DEMs when a spatial
auto-correlation structure model (variogram) is not available or differs locally? Tradi-
tionally, geostatistical techniques are developed to work with point-sampled values.
For DEMs generated directly from a scanning device (e.g. SRTM DEM) it is a serious5

problem to get a reliable estimate of a variogram. In addition, uncertainty of measured
elevations is heavily dependent on the type of land use (local spatial auto-correlation
structure), hence simulated DEMs should reflect this property also. A solution to gen-
erate simulations of e.g. SRTM DEM is the co-kriging framework. Separate estimation
of the variogram and cross-variogram parameters for the error surface and the main10

signal in the DEM is rather inexpensive, but simulations using co-kriging are even more
computationally intensive.

There is also an issue of how to represent the outputs of error propagation. Should
the land surface object derived using error propagation represented as fuzzy objects?
Should we abandon concept of absolutely discrete land surface objects at first place?15

If yes, which data structure should be used to save and exchange such objects? Or is
the spaghetti representation shown in Fig. 5 more informative? Tøssebro and Nygård
(2008) provide a probabilistic framework for computing uncertainties for simple geo-
graphic objects such as points and unstructured lines, but how could these be com-
bined with geostatistical simulations?20

Floor for discussion is open and everybody is welcome to contribute. For the be-
ginning, software developers can try implementing error propagation frameworks as
standard toolboxes to extract information from elevation data. The users can further
consider testing this framework in areas of variable relief, surface roughness and with
elevation measurements from various sources. We anticipate that the mean challenge25

of the proposed framework will be processing of the LiDAR data that is typically very
large and requires localization of analysis. With the further advances of technology
(computing power) and geostatistics (local variograms), both operations should be-
come feasible.
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Appendix A

Installation and first steps with R+SAGA

The following text provides instructions how to obtain and install SAGA and R and
implement the analysis described in this article with your own data. R+SAGA can be5

run on Windows™ and Linux operating systems. Mac OS™ version of SAGA is still
under development.

Start with installing R and its spatial packages. Visit the R project homepage4 and
obtain the recent installation from CRAN. After you finish installing R, open the new
session and install the contributed packages: select the Packages 7→ Install package(s)10

from the main menu. Note that, if you wish to install a package on the fly, you will need
to select a suitable CRAN mirror from where it will download and unpack a package.
Another quick way to get all packages used in R to do spatial analysis5 (as explained
in Bivand et al., 2008) is to install the ctv package and then execute the command:

> install.packages("ctv")
> library(ctv)
> install.views("Spatial")

This will allow most of the spatial packages available for R, including maptools, rgdal,15

gstat, geoR, and RSAGA.
Next, if you are a Windows™ user, obtain the SAGA binaries from a Source Forge

repository. SAGA GIS is a full-fledged GIS with support for raster and vector data. It
includes a large set of geoscientific algorithms (over 300 modules), being especially
powerful for the analysis of DEMs. With the release of version 2.0 in 2005, SAGA20

works under both Windows and Linux operating systems. In addition, SAGA is an
open-source package, which makes it especially attractive to users that would like

4http://r-project.org
5http://cran.r-project.org/web/views/Spatial.html
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extend or improve its existing functionality. To install SAGA simply unzip the binaries to
your program files directory. Then open SAGA GUI and test its functionality using point-
and-click operations. Now you can consider switching to the scripting environment. Go
to your R session and load the RSAGA library:

> library(RSAGA)

First check if R is able to locate SAGA on your machine:5

> rsaga.env()

$workspace
[1] "."

$cmd
[1] "saga_cmd.exe"10

$path
[1] "C:/Progra˜1/saga_vc"

$modules15

[1] "C:/Progra˜1/saga_vc/modules"

which means that you can now send operations from R to SAGA. Open the modules

folder under the SAGA directory and you will notice a large number of DLL libraries. To
get an info what can a certain module do, type:

> rsaga.get.modules("ta_channels")

$ta_channels

code name interactive20

1 0 Channel Network FALSE
2 1 Watershed Basins FALSE
3 2 Watershed Basins (extended) FALSE
4 3 Vertical Distance to CN FALSE
5 4 Overland Flow Distance to CN FALSE25
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6 5 D8 Flow Analysis FALSE
7 6 Strahler Order FALSE
8 NA <NA> FALSE
9 NA <NA> FALSE

Next, we need to get the list of parameters needed to extract channel network from5

a DEM map:

> rsaga.get.usage("ta_channels", 0)

SAGA CMD 2.0.4

library path: C:/Progra˜1/saga_vc/modules
library name: ta_channels
module name : Channel Network
Usage: 0 -ELEVATION <str> [-SINKROUTE <str>]10

-CHNLNTWRK <str> -CHNLROUTE <str>
-SHAPES <str> -INIT_GRID <str>
[-INIT_METHOD <num>] [-INIT_VALUE <str>]
[-DIV_GRID <str>] [-DIV_CELLS <num>]
[-TRACE_WEIGHT <str>] [-MINLEN <num>]15

-ELEVATION:<str> Elevation
Grid (input)

-SINKROUTE:<str> Flow Direction
Grid (optional input)

-CHNLNTWRK:<str> Channel Network20

Grid (output)
-CHNLROUTE:<str> Channel Direction

Grid (output)
-SHAPES:<str> Channel Network

Shapes (output)25

-INIT_GRID:<str> Initiation Grid
Grid (input)

-INIT_METHOD:<num> Initiation Type
Choice
Available Choices:30

[0] Less than
[1] Equals
[2] Greater than

-INIT_VALUE:<str> Initiation Threshold
Floating point35
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-DIV_GRID:<str> Divergence
Grid (optional input)

-DIV_CELLS:<num> Tracing: Max. Divergence
Integer
Minimum: 1.0000005

-TRACE_WEIGHT:<str> Tracing: Weight
Grid (optional input)

-MINLEN:<num> Min. Segment Length

Finally, you can generate a stream network shown in Fig. 3 using the
rsaga.geoprocessor :10

> rsaga.geoprocessor(lib="ta_channels",
+ module=0, param=list(ELEVATION="DEM.sgrd",
+ CHNLNTWRK="tmp.sgrd",
+ CHNLROUTE="tmp.sgrd",
+ SHAPES="streams.shp",
+ INIT_GRID="DEM.sgrd",
+ DIV_CELLS=3, MINLEN=40))

SAGA CMD 2.0.4

library path: C:/Progra˜1/saga_vc/modules
library name: ta_channels
module name : Channel Network
author : (c) 2001 by O.Conrad

15

Load grid: DEM.sgrd...
ready

Load grid: DEM.sgrd...
ready20

Parameters

Grid system: 30; 128x 129y;
6551817x 5070464y25

Elevation: DEM.sgrd
Flow Direction: [not set]

788

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/767/2010/hessd-7-767-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/767/2010/hessd-7-767-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 767–799, 2010

Uncertainty of stream
networks derived

from DEMs

T. Hengl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Channel Network: Channel Network
Channel Direction: Channel Direction
Channel Network: Channel Network
Initiation Grid: DEM.sgrd
Initiation Type: Greater than5

Initiation Threshold: 0.000000
Divergence: [not set]
Tracing: Max. Divergence: 3
Tracing: Weight: [not set]
Min. Segment Length: 4010

Channel Network: Pass 1
Channel Network: Pass 2
Channel Network: Pass 3
Create index: DEM.sgrd15

ready
Channel Network: Pass 4
Channel Network: Pass 5
Channel Network: Pass 6
ready20

ready

Save grid: tmp.sgrd...
ready

25

Save grid: tmp.sgrd...
ready

Save shapes: streams.shp...
ready30

Save table: streams.dbf...
ready

More detail on how to produce results shown can be found in the R script, provided
as a supplement to this article.35
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Fig. 1. Workflow scheme for stream extraction from elevation data: (a) assuming that elevations
carry no uncertainty; (b) the Monte Carlo error propagation approach with m realizations.
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Fig. 2. The uncertainty of deriving stream can be best described using the information entropy
(H) of a Bernoulli trial. This plot is courtesy of Brona Brejova, Comenius University in Bratislava,
Slovakia.
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Fig. 3. Stream network generated in SAGA GIS using standard settings. In this case we used
40 (pixels) as the minimum length of streams. Case study Baranja Hill; viewed from the West
side.
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Fig. 4. Variograms fitted for Baranja hill (above) and Zlatibor case studies (below): (left)
anisotropy in four directions; (right) isotropic Matérn variogram model fitted using the weighted
least squares (WLS) and its confidence bands.
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study; (right) Zlatibor case study.
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Fig. 6. Propagated error of mapping streams estimated using Eq. (5); visualized in SAGA
GIS: (a) Baranja hill case study; (b) Zlatibor case study. The lines indicate the true streams –
digitized from topo maps.
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Fig. 7. Bar plots showing relationship between the relative relief (difference from the mean)
and cumulative errors. In both cases the highest errors of mapping streams are in areas of low
local relief (slightly concave).
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